EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness
نویسندگان
چکیده
BACKGROUND Almost 90% of all cases of congenital, non-syndromic, severe to profound inherited deafness display an autosomal recessive mode of transmission (DFNB forms). To date, 47 causal DFNB genes have been identified, but many others remain to be discovered. We report the study of two siblings born to consanguineous Algerian parents and affected by isolated, profound congenital deafness. METHOD Whole-exome sequencing was carried out on these patients after a failure to identify mutations in the DFNB genes frequently involved. RESULTS A biallelic nonsense mutation, c.88C > T (p.Gln30*), was identified in EPS8 that encodes epidermal growth factor receptor pathway substrate 8, a 822 amino-acid protein involved in actin dynamics. This mutation predicts a truncated inactive protein or no protein at all. The mutation was also present, in the heterozygous state, in one clinically unaffected sibling and in both unaffected parents, and was absent from the other two unaffected siblings. It was not found in 120 Algerian normal hearing control individuals or in the Exome Variant Server database. EPS8 is an F-actin capping and bundling protein. Mutant mice lacking EPS8 (Eps8-/- mice), which is present in the hair bundle, the sensory antenna of the auditory sensory cells that operate the mechano-electrical transduction, are also profoundly deaf and have abnormally short hair bundle stereocilia. CONCLUSION This new DFNB form is likely to arise from abnormal hair bundles resulting in compromised detection of physiological sound pressures.
منابع مشابه
The Actin-Binding Proteins Eps8 and Gelsolin Have Complementary Roles in Regulating the Growth and Stability of Mechanosensory Hair Bundles of Mammalian Cochlear Outer Hair Cells
Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamical...
متن کاملEps8 Regulates Hair Bundle Length and Functional Maturation of Mammalian Auditory Hair Cells
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to ...
متن کاملAlternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia.
WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereoc...
متن کاملProgressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2.
Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth ...
متن کاملAutosomal Recessive Nonsyndromic Hearing Impairment due to a Novel Deletion in the RDX Gene
The RDX gene anchors cytoskeletal actin of stereocilia to hair cell transmembrane and is responsible for autosomal recessive nonsyndromic hearing impairment (ARNSHI) due to DFNB24. A genome scan was performed using DNA samples from a consanguineous Pakistani family with ARNSHI. A significant maximum two-point LOD score of 4.5 (θ = 0) and multipoint LOD score of 5.8 were achieved at marker D11S1...
متن کامل